3.115 \(\int \frac{c+d x}{a-b x^4} \, dx\)

Optimal. Leaf size=87 \[ \frac{c \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt [4]{b}}+\frac{c \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt [4]{b}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}} \]

[Out]

(c*ArcTan[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(1/4)) + (c*ArcTanh[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(1/4)) + (
d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a]])/(2*Sqrt[a]*Sqrt[b])

________________________________________________________________________________________

Rubi [A]  time = 0.0654591, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {1876, 212, 208, 205, 275} \[ \frac{c \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt [4]{b}}+\frac{c \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt [4]{b}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)/(a - b*x^4),x]

[Out]

(c*ArcTan[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(1/4)) + (c*ArcTanh[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(1/4)) + (
d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a]])/(2*Sqrt[a]*Sqrt[b])

Rule 1876

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(x^ii*(Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2)))/(a + b*x^n), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin{align*} \int \frac{c+d x}{a-b x^4} \, dx &=\int \left (\frac{c}{a-b x^4}+\frac{d x}{a-b x^4}\right ) \, dx\\ &=c \int \frac{1}{a-b x^4} \, dx+d \int \frac{x}{a-b x^4} \, dx\\ &=\frac{c \int \frac{1}{\sqrt{a}-\sqrt{b} x^2} \, dx}{2 \sqrt{a}}+\frac{c \int \frac{1}{\sqrt{a}+\sqrt{b} x^2} \, dx}{2 \sqrt{a}}+\frac{1}{2} d \operatorname{Subst}\left (\int \frac{1}{a-b x^2} \, dx,x,x^2\right )\\ &=\frac{c \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt [4]{b}}+\frac{c \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt [4]{b}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}}\\ \end{align*}

Mathematica [A]  time = 0.0353374, size = 134, normalized size = 1.54 \[ \frac{-\left (\sqrt [4]{a} d+\sqrt [4]{b} c\right ) \log \left (\sqrt [4]{a}-\sqrt [4]{b} x\right )+\sqrt [4]{b} c \log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )+2 \sqrt [4]{b} c \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )+\sqrt [4]{a} d \log \left (\sqrt{a}+\sqrt{b} x^2\right )-\sqrt [4]{a} d \log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )}{4 a^{3/4} \sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)/(a - b*x^4),x]

[Out]

(2*b^(1/4)*c*ArcTan[(b^(1/4)*x)/a^(1/4)] - (b^(1/4)*c + a^(1/4)*d)*Log[a^(1/4) - b^(1/4)*x] + b^(1/4)*c*Log[a^
(1/4) + b^(1/4)*x] - a^(1/4)*d*Log[a^(1/4) + b^(1/4)*x] + a^(1/4)*d*Log[Sqrt[a] + Sqrt[b]*x^2])/(4*a^(3/4)*Sqr
t[b])

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 101, normalized size = 1.2 \begin{align*}{\frac{c}{4\,a}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{c}{2\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \right ) }-{\frac{d}{4}\ln \left ({ \left ( -a+{x}^{2}\sqrt{ab} \right ) \left ( -a-{x}^{2}\sqrt{ab} \right ) ^{-1}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)/(-b*x^4+a),x)

[Out]

1/4*c*(1/b*a)^(1/4)/a*ln((x+(1/b*a)^(1/4))/(x-(1/b*a)^(1/4)))+1/2*c*(1/b*a)^(1/4)/a*arctan(x/(1/b*a)^(1/4))-1/
4*d/(a*b)^(1/2)*ln((-a+x^2*(a*b)^(1/2))/(-a-x^2*(a*b)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-b*x^4+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [A]  time = 0.770489, size = 126, normalized size = 1.45 \begin{align*} - \operatorname{RootSum}{\left (256 t^{4} a^{3} b^{2} - 32 t^{2} a^{2} b d^{2} - 16 t a b c^{2} d + a d^{4} - b c^{4}, \left ( t \mapsto t \log{\left (x + \frac{- 128 t^{3} a^{3} b d^{2} + 16 t^{2} a^{2} b c^{2} d + 8 t a^{2} d^{4} - 4 t a b c^{4} + 5 a c^{2} d^{3}}{4 a c d^{4} + b c^{5}} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-b*x**4+a),x)

[Out]

-RootSum(256*_t**4*a**3*b**2 - 32*_t**2*a**2*b*d**2 - 16*_t*a*b*c**2*d + a*d**4 - b*c**4, Lambda(_t, _t*log(x
+ (-128*_t**3*a**3*b*d**2 + 16*_t**2*a**2*b*c**2*d + 8*_t*a**2*d**4 - 4*_t*a*b*c**4 + 5*a*c**2*d**3)/(4*a*c*d*
*4 + b*c**5))))

________________________________________________________________________________________

Giac [B]  time = 1.09158, size = 304, normalized size = 3.49 \begin{align*} \frac{\sqrt{2} \left (-a b^{3}\right )^{\frac{1}{4}} c \log \left (x^{2} + \sqrt{2} x \left (-\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{-\frac{a}{b}}\right )}{8 \, a b} - \frac{\sqrt{2} \left (-a b^{3}\right )^{\frac{1}{4}} c \log \left (x^{2} - \sqrt{2} x \left (-\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{-\frac{a}{b}}\right )}{8 \, a b} + \frac{\sqrt{2}{\left (\sqrt{2} \sqrt{-a b} b d + \left (-a b^{3}\right )^{\frac{1}{4}} b c\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (-\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{4 \, a b^{2}} + \frac{\sqrt{2}{\left (\sqrt{2} \sqrt{-a b} b d + \left (-a b^{3}\right )^{\frac{1}{4}} b c\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (-\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{4 \, a b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-b*x^4+a),x, algorithm="giac")

[Out]

1/8*sqrt(2)*(-a*b^3)^(1/4)*c*log(x^2 + sqrt(2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(a*b) - 1/8*sqrt(2)*(-a*b^3)^(1/4)
*c*log(x^2 - sqrt(2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(a*b) + 1/4*sqrt(2)*(sqrt(2)*sqrt(-a*b)*b*d + (-a*b^3)^(1/4)
*b*c)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(-a/b)^(1/4))/(-a/b)^(1/4))/(a*b^2) + 1/4*sqrt(2)*(sqrt(2)*sqrt(-a*b)*
b*d + (-a*b^3)^(1/4)*b*c)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(-a/b)^(1/4))/(-a/b)^(1/4))/(a*b^2)